Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490181

RESUMO

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Assuntos
Glicoproteínas da Zona Pelúcida , Humanos , Masculino , Sêmen , Espermatozoides/química , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas da Zona Pelúcida/química , Glicoproteínas da Zona Pelúcida/metabolismo , Óvulo/química , Óvulo/metabolismo , Feminino
2.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512724

RESUMO

Radial neuronal migration is a key neurodevelopmental event for proper cortical laminar organization. The multipolar-to-bipolar transition, a critical step in establishing neuronal polarity during radial migration, occurs in the subplate/intermediate zone (SP/IZ), a distinct region of the embryonic cerebral cortex. It has been known that the extracellular matrix (ECM) molecules are enriched in the SP/IZ. However, the molecular constitution and functions of the ECM formed in this region remain poorly understood. Here, we identified neurocan (NCAN) as a major chondroitin sulfate proteoglycan in the mouse SP/IZ. NCAN binds to both radial glial-cell-derived tenascin-C (TNC) and hyaluronan (HA), a large linear polysaccharide, forming a ternary complex of NCAN, TNC, and HA in the SP/IZ. Developing cortical neurons make contact with the ternary complex during migration. The enzymatic or genetic disruption of the ternary complex impairs radial migration by suppressing the multipolar-to-bipolar transition. Furthermore, both TNC and NCAN promoted the morphological maturation of cortical neurons in vitro. The present results provide evidence for the cooperative role of neuron- and radial glial-cell-derived ECM molecules in cortical development.


Assuntos
Matriz Extracelular , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Matriz Extracelular/metabolismo , Córtex Cerebral/metabolismo , Movimento Celular/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo
4.
PLoS One ; 18(3): e0283087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943849

RESUMO

The egg coat including mammalian zona pellucida (ZP) and the avian equivalent, i.e., inner-perivitelline layer (IPVL), is a specialized extracellular matrix being composed of the ZP glycoproteins and surrounds both pre-ovulatory oocytes and ovulated egg cells in vertebrates. The egg coat is well known for its potential importance in both the reproduction and early development, although the underlying molecular mechanisms remain to be fully elucidated. Interestingly, ZP3, one of the ZP-glycoprotein family members forming scaffolds of the egg-coat matrices with other ZP glycoproteins, exhibits extreme but distinctive microheterogeneity to form a large number of isoelectric-point isoforms at least in the chicken IPVL. In the present study, we performed three-dimensional confocal imaging and two-dimensional polyacrylamide-gel electrophoresis (2D-PAGE) of chicken IPVLs that were isolated from the ovarian follicles at different growth stages before ovulation. The results suggest that the relative proportions of the ZP3 isoforms are differentially altered during the structural maturation of the egg-coat matrices. Furthermore, tandem mass spectrometry (MS/MS) analyses and ZP1 binding assays against separated ZP3 isoforms demonstrated that each ZP3 isoform contains characteristic modifications, and there are large differences among ZP3 isoforms in the ZP1 binding affinities. These results suggest that the microheterogeneity of chicken ZP3 might be regulated to be associated with the formation of egg-coat matrices during the structural maturation of chicken IPVL. Our findings may provide new insights into molecular mechanisms of egg-coat assembly processes.


Assuntos
Espectrometria de Massas em Tandem , Zona Pelúcida , Animais , Feminino , Zona Pelúcida/metabolismo , Proteínas do Ovo/metabolismo , Glicoproteínas da Zona Pelúcida/metabolismo , Galinhas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Mamíferos/metabolismo
5.
Nat Commun ; 13(1): 3880, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794124

RESUMO

Sexual reproduction consists of genome reduction by meiosis and subsequent gamete fusion. The presence of genes homologous to eukaryotic meiotic genes in archaea and bacteria suggests that DNA repair mechanisms evolved towards meiotic recombination. However, fusogenic proteins resembling those found in gamete fusion in eukaryotes have so far not been found in prokaryotes. Here, we identify archaeal proteins that are homologs of fusexins, a superfamily of fusogens that mediate eukaryotic gamete and somatic cell fusion, as well as virus entry. The crystal structure of a trimeric archaeal fusexin (Fusexin1 or Fsx1) reveals an archetypical fusexin architecture with unique features such as a six-helix bundle and an additional globular domain. Ectopically expressed Fusexin1 can fuse mammalian cells, and this process involves the additional globular domain and a conserved fusion loop. Furthermore, archaeal fusexin genes are found within integrated mobile elements, suggesting potential roles in cell-cell fusion and gene exchange in archaea, as well as different scenarios for the evolutionary history of fusexins.


Assuntos
Archaea , Eucariotos , Animais , Archaea/genética , Fusão Celular , Eucariotos/genética , Células Eucarióticas , Células Germinativas/metabolismo , Mamíferos
6.
Nat Struct Mol Biol ; 29(3): 190-193, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35273390

RESUMO

Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments protect against gastrointestinal and urinary tract infections by acting as decoys for bacterial fimbrial lectin FimH. By combining AlphaFold2 predictions with X-ray crystallography and cryo-EM, we show that these proteins contain a bipartite decoy module whose new fold presents the high-mannose glycan recognized by FimH. The structure rationalizes UMOD mutations associated with kidney diseases and visualizes a key epitope implicated in cast nephropathy.


Assuntos
Adesinas Bacterianas , Fímbrias Bacterianas , Adesinas Bacterianas/genética , Cristalografia por Raios X , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Proteínas Ligadas por GPI , Humanos , Manose/análise , Uromodulina/análise , Uromodulina/química , Uromodulina/metabolismo
7.
Biochim Biophys Acta Gen Subj ; 1865(2): 129804, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253804

RESUMO

BACKGROUND: Perineuronal nets (PNNs) are insoluble aggregates of extracellular matrix molecules in the brain that consist of hyaluronan (HA) and chondroitin sulfate proteoglycans (CSPGs). PNNs promote the acquisition and storage of memories by stabilizing the formation of synapses in the adult brain. Although the deterioration of PNNs has been suggested to contribute to the age-dependent decline in brain function, the molecular mechanisms underlying age-related changes in PNNs remain unclear. METHODS: The amount and solubility of PNN components were investigated by sequential extraction followed by a disaccharide analysis and immunoblotting. We examined the interaction between HA and aggrecan, a major HA-binding CSPG, by combining mass spectrometry and pull-down assays. RESULTS: The solubility and amount of HA increased in the brain with age. Among several CSPGs, the solubility of aggrecan was selectively elevated during aging. In contrast to alternations in biochemical properties, the expression of PNN components at the transcript level was not markedly changed by aging. The increased solubility of aggrecan was not due to the loss of HA-binding properties. Our results indicated that the degradation of high-molecular-mass HA induced the release of the HA-aggrecan complex from PNNs in the aged brain. CONCLUSION: The present study revealed a novel mechanism underlying the age-related deterioration of PNNs in the brain.


Assuntos
Agrecanas/metabolismo , Envelhecimento , Encéfalo/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Ácido Hialurônico/metabolismo , Animais , Encéfalo/citologia , Matriz Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/citologia , Neurônios/metabolismo
8.
J Biochem ; 168(3): 243-256, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330257

RESUMO

Biological degradation of cellulose from dead plants in nature and plant biomass from agricultural and food-industry waste is important for sustainable carbon recirculation. This study aimed at searching diverse cellulose-degrading systems of wild filamentous fungi and obtaining fungal lines useful for cellooligosaccharide production from agro-industrial wastes. Fungal lines with cellulolytic activity were screened and isolated from stacked rice straw and soil in subtropical fields. Among 13 isolated lines, in liquid culture with a nutrition-limited cellulose-containing medium, four lines of Aspergillus spp. secreted 50-60 kDa proteins as markedly dominant components and gave clear activity bands of possible endo-ß-1,4-glucanase in zymography. Mass spectroscopy (MS) analysis of the dominant components identified three endo-ß-1,4-glucanases (GH5, GH7 and GH12) and two cellobiohydrolases (GH6 and GH7). Cellulose degradation by the secreted proteins was analysed by LC-MS-based measurement of derivatized reducing sugars. The enzymes from the four Aspergillus spp. produced cellobiose from crystalline cellulose and cellotriose at a low level compared with cellobiose. Moreover, though smaller than that from crystalline cellulose, the enzymes of two representative lines degraded powdered rice straw and produced cellobiose. These fungal lines and enzymes would be effective for production of cellooligosaccharides as cellulose degradation-intermediates with added value other than glucose.


Assuntos
Aspergillus/enzimologia , Secreções Corporais/enzimologia , Celulase/biossíntese , Celulose 1,4-beta-Celobiosidase/biossíntese , Meios de Cultura/química , Proteínas Fúngicas/biossíntese , Nutrientes , Aspergillus/genética , Biodegradação Ambiental , Celobiose/biossíntese , Celulose/biossíntese , Celulose 1,4-beta-Celobiosidase/genética , Hidrólise , Oligossacarídeos/biossíntese , Oryza/microbiologia , Microbiologia do Solo , Trioses/biossíntese
9.
Nat Commun ; 10(1): 3086, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300655

RESUMO

Mammalian fertilisation begins when sperm interacts with the egg zona pellucida (ZP), whose ZP1 subunit is important for fertility by covalently cross-linking ZP filaments into a three-dimensional matrix. Like ZP4, a structurally-related component absent in the mouse, ZP1 is predicted to contain an N-terminal ZP-N domain of unknown function. Here we report a characterisation of ZP1 proteins carrying mutations from infertile patients, which suggests that, in human, filament cross-linking by ZP1 is crucial to form a stable ZP. We map the function of ZP1 to its ZP-N1 domain and determine crystal structures of ZP-N1 homodimers from a chicken homolog of ZP1. These reveal that ZP filament cross-linking is highly plastic and can be modulated by ZP1 fucosylation and, potentially, zinc sparks. Moreover, we show that ZP4 ZP-N1 forms non-covalent homodimers in chicken but not in human. Together, these data identify human ZP1 cross-links as a promising target for non-hormonal contraception.


Assuntos
Infertilidade Feminina/genética , Domínios Proteicos/fisiologia , Glicoproteínas da Zona Pelúcida/metabolismo , Zona Pelúcida/metabolismo , Animais , Galinhas , Cristalografia por Raios X , Feminino , Fertilização/fisiologia , Mutação da Fase de Leitura , Humanos , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Alinhamento de Sequência , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/isolamento & purificação , Glicoproteínas da Zona Pelúcida/ultraestrutura
10.
Curr Top Dev Biol ; 130: 307-329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853181

RESUMO

Birds are oviparous vertebrates in terrestrial animals. Birds' eggs accumulate mass of egg yolk during the egg development and are accordingly much larger than the eggs of viviparous vertebrates. Despite such difference in size and contents, the birds' eggs are surrounded with the egg-coat morphologically and compositionally resembling the mammalian egg-coat, zona pellucida. On the other hand, there are some differences in part between the two egg-coats, though relationships of such structural differences to any biological roles specific for the extracellular matrix of birds' eggs are not fully understood. In birds, unlike mammals, ZP proteins constituting the egg-coat are highly conserved and therefore those of chicken are described as a representative of birds. The egg-coat ZP proteins, ZP1, ZP3, and ZPD as the majors, accumulate and form the matrix by self-assembly around the egg rapidly growing in the ovarian follicle, in which ZP1 is from liver and both ZP3 and ZPD are from follicular granulosa cells. Although details of the egg-coat-sperm interaction on fertilization remain to be investigated, the lytic degradation process of egg-coat matrix for the sperm penetration has become to be clarified gradually. ZP1 is the primary target of sperm acrosin, and the limited cleavage in the specific region leading to the loss of intermolecular cross-linkages is crucial for the lysis of egg-coat matrix. Possible roles of the ZP1 with the additional sequence characteristic to birds are discussed from a viewpoint of giving both robustness and elastomeric nature to the egg-coat matrix for the birds' eggs.


Assuntos
Galinhas , Proteínas do Ovo/fisiologia , Glicoproteínas da Zona Pelúcida/fisiologia , Sequência de Aminoácidos , Animais , Embrião de Galinha , Galinhas/metabolismo , Galinhas/fisiologia , Proteínas do Ovo/química , Feminino , Masculino , Modelos Biológicos , Óvulo/química , Conformação Proteica , Interações Espermatozoide-Óvulo/fisiologia , Zona Pelúcida/química , Zona Pelúcida/fisiologia , Glicoproteínas da Zona Pelúcida/química
11.
J Biochem ; 164(2): 113-125, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490044

RESUMO

Casein (CN) is the major milk protein to nourish infants but, in certain population, it causes cow's milk allergy, indicating the uptake of antigenic CN and their peptides through the intestinal epithelium. Using human intestinal Caco-2 cell monolayers, the apical-to-basal transepithelial transport of CN was investigated. Confocal microscopy using component-specific antibodies showed that αs1-CN antigens became detectable as punctate signals at the apical-side cytoplasm and reached to the cytoplasm at a tight-junction level within a few hours. Such intracellular CN signals were more remarkable than those of the other antigens, ß-lactoglobulin and ovalbumin, colocalized in part with an early endosome marker protein (EEA1) and decreased in the presence of cytochalasin D or sodium azide and also at lowered temperature at 4°C. Liquid chromatography coupled with mass spectroscopy analysis of the protein fraction in the basal-side medium identified the αs1-CB fragment including the N-terminal region and the αs2-CN fragment containing the central part of polypeptide at 100-1,000 fmol per well levels. Moreover, ß-CN C-terminal overlapping peptides were identified in the peptide fraction below 10 kDa of the basal medium. These results suggest that CNs are partially degraded by cellular proteases and/or peptidases and immunologically active CN fragments are transported to basal side of the cell monolayers.


Assuntos
Caseínas/análise , Caseínas/metabolismo , Leite/química , Animais , Transporte Biológico , Células CACO-2 , Bovinos , Células Cultivadas , Cromatografia Líquida , Humanos , Espectrometria de Massas , Microscopia Confocal , Leite/metabolismo
12.
Adv Exp Med Biol ; 1001: 91-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28980231

RESUMO

In birds in the reproductive season, an egg is ovulated without cumulus cells from the largest follicle with the highest hierarchy in the ovary. The outermost part of the ovulated eggs is the perivitelline layer, a glycoprotein matrix consisting of a few ZP-glycoproteins. The fertilization starts from sperm penetration of the perivitelline layer predominantly in the germinal disc region, followed by uptake of the sperm into the egg, and goes through by the fusion of sperm male pronucleus with the female pronucleus in the egg. A series of these fertilization steps occurs in the infundibulum of the oviduct within a short period after ovulation. Some pioneering microstructural studies using electron microscopy and supporting biochemical data from later studies indicate that, in avian fertilization, sperm interacts with the perivitelline layer covering the germinal disc, locally degrade and dissolve the matrix of the perivitelline layer, and penetrate it through the hole made proteolytically at the sperm-binding site on the perivitelline layer. Several molecules and structures presumably involved in the sperm-perivitelline interaction have been characterized, especially sperm proteases and their targets in the egg perivitelline layer. On the other hand, no molecules involved in the sperm-egg membrane fusion for the male pronucleus uptake into the egg have yet been identified or characterized and, moreover, no orthologue but one have been annotated so far in the chicken genome for the mouse genes involved in the sperm-egg membrane fusion.


Assuntos
Galinhas/fisiologia , Oócitos/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia , Reação Acrossômica , Animais , Feminino , Masculino
13.
Biol Reprod ; 91(5): 107, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25253730

RESUMO

Vertebrate eggs are surrounded by an egg coat, which is a specific extracellular egg matrix consisting of several glycoproteins with a conserved zona pellucida (ZP) domain. Two mammalian egg coat subunits, ZP2 and ZP3, have been suggested to act as sperm receptors. In bird eggs, however, ZP2 has never been identified in the egg coat of mature oocytes and ovulated eggs. Here we report that chicken ZP2 is expressed in immature small follicles and remains as an egg-coat component locally in the germinal disc region of mature eggs. RT-PCR analysis indicated marked expression of the ZP2 and ZP4 genes in the granulosa cells of immature white follicles, whereas the ZP3 and ZPD genes showed marked expression in the cells of maturing yellow follicles. ZP2 was identified in the egg coat isolated from immature follicles as a heavily N-glycosylated glycoprotein of ∼200 kDa, which was enzymatically converted to a 70-kDa deglycosylated form. Immunoblotting and immunohistological analyses showed that ZP2 was localized around the germinal disc region of mature follicles. ZP2 was accumulated in the egg coat of immature white follicles at the earlier stages of oocyte development and became a minor component in the egg coat of maturing yellow follicles, except for the germinal disc region. Localization of ZP2 in the germinal disc region of mature eggs, where sperm bind to the egg coat at high density, suggests some role for ZP2 in the preferential binding and penetration of sperm in the germinal disc region of bird eggs.


Assuntos
Blastodisco/metabolismo , Membrana Celular/metabolismo , Galinhas , Proteínas do Ovo/metabolismo , Glicoproteínas de Membrana/metabolismo , Oócitos/metabolismo , Óvulo/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Galinhas/genética , Galinhas/metabolismo , Proteínas do Ovo/genética , Casca de Ovo/metabolismo , Feminino , Expressão Gênica , Glicosilação , Glicoproteínas de Membrana/genética , Oogênese/fisiologia , Receptores de Superfície Celular/genética , Interações Espermatozoide-Óvulo/genética , Distribuição Tecidual , Glicoproteínas da Zona Pelúcida
14.
Reproduction ; 144(4): 423-31, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22859519

RESUMO

At the time of fertilization, the extracellular matrix surrounding avian oocytes, termed the perivitelline membrane (pvm), is hydrolyzed by a sperm-borne protease, although the actual protease that is responsible for the digestion of the pvm remains to be identified. Here, we show evidence that the ubiquitin-proteasome system is functional in the fertilization of Japanese quail. The activities for the induction of the acrosome reaction and binding to ZP3 as revealed by ligand blotting of purified serum ZP1 are similar to those of pvm ZP1. Western blot analysis of purified ZP1 and ZP3 by the use of the anti-ubiquitin antibody showed that only pvm ZP1 was reactive to the antibody. In vitro penetration assay of the sperm on the pvm indicated that fragments of ZP1 and intact ZP3 were released from the pvm. Western blot analysis using the anti-20S proteasome antibody and ultrastructural analysis showed that immunoreactive proteasome was localized in the acrosomal region of the sperm. Inclusion of specific proteasome inhibitor MG132 in the incubation mixture, or depletion of extracellular ATP by the addition of apyrase, efficiently suppressed the sperm perforation of the pvm. These results demonstrate for the first time that the sperm proteasome is important for fertilization in birds and that the extracellular ubiquitination of ZP1 might occur during its transport via blood circulation.


Assuntos
Proteínas Aviárias/metabolismo , Coturnix/fisiologia , Proteínas do Ovo/metabolismo , Fertilização , Glicoproteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Superfície Celular/metabolismo , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo , Acrossomo/efeitos dos fármacos , Acrossomo/metabolismo , Acrossomo/ultraestrutura , Reação Acrossômica/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/sangue , Proteínas Aviárias/química , Transporte Biológico , Proteínas do Ovo/sangue , Proteínas do Ovo/química , Proteínas do Ovo/isolamento & purificação , Feminino , Fertilização/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/isolamento & purificação , Microscopia Imunoeletrônica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteassoma/farmacologia , Isoformas de Proteínas/sangue , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/sangue , Receptores de Superfície Celular/química , Receptores de Superfície Celular/isolamento & purificação , Espermatozoides/enzimologia , Espermatozoides/ultraestrutura , Ubiquitinação , Glicoproteínas da Zona Pelúcida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...